

Current Transducer LA 25-NP/SP2

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

			_
FI	lectri	cal	data

Primary nominal r.m.s. cu	25		At	
Primary current, measuring range		0 + 3	6	At
Measuring resistance		\mathbf{R}_{Mmin}	\mathbf{R}_{Mmax}	
with + 15 V	@ + 25 At max	100	270	Ω
	@ + 36 At _{max}	100	170	Ω
Secondary nominal r.m.s	. current	25		mΑ
Conversion ratio		1-2-3-4	-5 : 100	0
Supply voltage (± 5 %)		0 + 1	5	V
Current consumption		10 + I _s		mA
R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	2.5		kV
R.m.s. rated voltage 1), sa	afe separation	600		V
ba	asic isolation	1700		V
	Primary current, measuring Measuring resistance with + 15 V Secondary nominal r.m.s. Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isol R.m.s. rated voltage ¹⁾ , sa	Measuring resistance with + 15 V @ + 25 At max @ + 36 At max Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %)	Primary current, measuring range $0+30$ Measuring resistance $R_{\text{M min}}$ with + 15 V @ + 25 At and a 100 and $0+30$ Measuring resistance $0+30$	Primary current, measuring range $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Accuracy - F)vnamic	performance	data
Accuracy E	ynanic	periorinarioe	uutu

Х е _L	Typical accuracy @ I_{PN} , $T_A = 25^{\circ}C$ Linearity	± 0.5 < 0.2		% %
I _О I _{ОМ} I _{ОТ}	Offset current $^{2)}$ @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Residual current $^{3)}$ @ $\mathbf{I}_{p} = 0$, after a Thermal drift of \mathbf{I}_{O}	Typ ± 0.05 ± 0.05 ± 0.06 ± 0.10	± 0.15 ± 0.25	mA mA
t _, di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 50 DC 1	50	μs A/μs kHz

General data

T _A	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
$\mathbf{R}_{_{P}}$	Primary resistance per turn @ T _A = 25°C	< 1.25	$m\Omega$
R _s	Secondary coil resistance @ T _A = 70°C	60	Ω
R _{IS}	Isolation resistance @ 500 V, $T_A = 25^{\circ}C$	> 1500	$M\Omega$
m	Mass	22	g
	Standards 5)	EN 50178 : 1	997

Notes : 1) Pollution class 2

- 2) Measurement carried out after 15 mn functioning
- $^{\scriptscriptstyle 3)}$ The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available.

$I_{PN} = 5-6-8-12-25 A$

Features

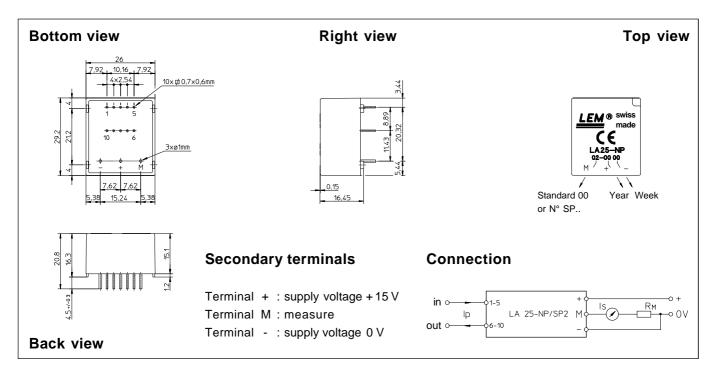
- Closed loop (compensated) multirange current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_C = 0 ... + 15 (\pm 5 \%) V$
- $\mathbf{R}_{s} = 60 \ \Omega \ (@ \mathbf{T}_{A} = 70^{\circ} \text{C})$
- Unidirectional measure.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060717/4

Dimensions LA 25-NP/SP2 (in mm. 1 mm = 0.0394 inch)

Number of primary	nominal	current maximum	N o m i n a l output current	Turns ratio	Primary resistance	Primary insertion inductance	Recommended connections
turns	I _{PN} [A]	I_{P} [A]	I _{SN} [mA]	$\mathbf{K}_{_{\mathrm{N}}}$	$\mathbf{R}_{P} [m\Omega]$	L _P [μH]	
1	25	36	25	1 : 1000	0.3	0.023	5 4 3 2 1 IN 0-0-0-0-0 0-0-0-0-0 OUT 6 7 8 9 10
2	12	18	24	2:1000	1.1	0.09	5 4 3 2 1 IN 0-0 0-0-0 0-0 0-0-0 OUT 6 7 8 9 10
3	8	12	24	3:1000	2.5	0.21	5 4 3 2 1 IN 0-0 0 0-0 0-0 0-0 OUT 6 7 8 9 10
4	6	9	24	4 : 1000	4.4	0.37	5 4 3 2 1 IN 0 0-0 0 0 0 0-0 0 0 OUT 6 7 8 9 10
5	5	7	25	5 : 1000	6.3	0.58	5 4 3 2 1 IN 0 0 0 0 0 0 0 0 OUT 6 7 8 9 10

Mechanical characteristics

Remark

terminals 10, 9, 8, 7, 6.

 \bullet I_s is positive when I_p flows from terminals 1, 2, 3, 4, 5 to

• General tolerance

• Fastening & connection of primary

 \pm 0.2 mm

10 pins $0.7 \times 0.6 \text{ mm}$

• Fastening & connection of secondary

• Recommended PCB hole

3 pins \varnothing 1 mm

1.2 mm

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.